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Meecham and his co-workers have developed a theory of turbulence involving 
a truncated Wiener-Hermite expansion of the velocity field. The randomness 
is taken up by a white-noise function associated, in the original version of the 
theory, with the initial state of the flow. The mechanical problem then reduces 
to a set of coupled integro-differential equations for deterministic kernels. We 
have solved numerically an analogous set for Burgers’s model equation and have 
computed, for the sake of comparison, actual random solutions of the Burgers 
equation. We find that the theory based on the first two terms of the Wiener- 
Hermite expansion predicts an insufficient rate of energy decay for Reynolds 
numbers larger than two, because the equations for the kernels contain no 
convolution integrals in wave-number space and therefore permit no cascade of 
energy. An energy cascade in wave-number space corresponds to a cascade up 
through successive terms of the Wiener-Hermite expansion. Pictures of the 
Gaussian and non-Gaussian components of an actual solution of the Burgers 
equation show directly that only higher-order terms in the Wiener-Hermite 
expansion are capable of representing shocks, which dissipate the energy. Higher- 
order terms would be needed even for a nearly Gaussian field of evolving three- 
dimensional turbulence, ‘ Gaussianity ’, in the experimentalist’s sense, has no 
bearing on the rate of convergence of a Wiener-Hermite expansion whose white- 
noise function is associated with the initial state. Such an expansion would 
converge only if the velocity field and its initial state were joint-normally dis- 
tributed. The question whether a time-varying white-noise function can speed 
the Convergence is treated in the paper following this one. 

1. Introduction 
Thirty years ago, Wiener (1939) proposed a novel method for analyzing 

hydrodynamic turbulence: the turbulent field was to be expanded as a poly- 
nomial series in powers of the ‘pure chaos’, a colourful name for what has since 
become known as the white-noise function. The idea lay dormant for twenty 
years, but in the last ten years it has stimulated considerable activity, largely 
due to the publication of Wiener’s (1958) book on non-linear random processes 
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and to a series of papers presented by Meecham and his co-workers (Siegel & 
Meecham 1959, Meecham & Siegel 1964, Meecham & Jeng 1968). 

The terms in Wiener's expansion have the form of Hermite polynomials in 
the white-noise function. In  order to see why Hermite polynomials are advan- 
tageous, let us consider the case of a single variable y that has evolved in time t 
from some initial state a. y ( t ;  a )  might be the solution of a first-order differential 
equation under the initial condition y (0 ;a )  = a. Under fairly general circum- 
stances, y can be expanded in terms of its initial state as a series of Hermite 
polynomials m 

The k,(t) are coefficients characterizing the relationship between y and a,  and 

The first few of the Hermite polynomials h, are as follows: 

h, = 1, h, = a, h, = (a2- 1)/,/2, h, = (a3-3a)/,/6, etc. 

The h, have been normalized so that they are orthonormal under the weighting 
function 1 

Thus 

Given a function y ( t ;  a) ,  the corresponding coefficients k,(t) can be extracted 
according to the prescription 

m 

k,(t) = 1 G(a) h,(a) y ( t ;  a )  da. 
-m 

No statistical considerations have been introduced so far; Hermite polynomials 
are just one among many possible complete sets of functions into which y(t; a)  
can be expanded. 

The feature that distinguishes the Hermite polynomials is that they are 
orthonormal with respect to a weighting function G(a) that has the form of a 
Gaussian probability distribution of unit variance. Suppose that a is a Gaussian 
random variable and that y is a random strictly on account of its dependence on a, 
as is the case if y evolves according to a deterministic differential equation. Then 
the Hermite inversion integral (1.2) means the same thing as 

Ic,(t) = (h" (4  a)) ,  

where the angle brackets denote an ensemble average over the a's; as far as the 
statistics is concerned, t is just a parameter. The k,'s can be extracted as ensemble 
averages even if the underlying differential equation is unknown. An analytical 
expression for y ( t ;a )  can be constructed as a Hermite-polynomial series by 
averaging randomly selected products of y( t ;  a)  and h,(a), a technique essentially 
equivalent to evaluating the Hermite inversion integral by a Monte-Carlo 
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method. Used in that way, the Wiener-Hermite expansion is a tool for analysing 
the output of systems whose internal mechanism is unknown. 

The expansion is put to use differently in turbulence theory. If y ( t ; a )  were 
to  depend almost linearly on itsinitial state a,  then then = 1 term in the expansion 
(1.1) wouId dominate all the others, and y itself would be Gaussian. If the series 
(1.1) converges rapidly around n = 1, in other words, then y is nearly Gaussian. 
A dynamical theory of turbulence can be founded upon the conjecture that the 
converse is true: if y is nearly Gaussian, then the Hermite expansion of y in 
terms of its Gaussian random initial value converges rapidly, regardless of the 
dynamics that has transformed y(0;  a )  into y ( t ;  a). We shall return to the case of 
a single random variable y in $ 5  and show by example that the conjecture is 
not necessarily true. We shall show in $ 3  2-4 that the theory of turbulence based 
upon the conjecture cannot account for one of the fundamental attributes of 
turbulence-the energy cascade. Orszag & Bissonnette (1967) have discussed 
other deficiencies of the theory. 

The discussion will be carried out in terms of the Burgers equation, a one- 
dimensional model of the Navier-Stokes equations. The model is used for 
algebraic simplicity; our conclusions apply with equal force to the three- 
dimensional problem (Canavan 1969). Rather than a single random variable y, 
a random function u(x)  is needed to describe one realization of the model tur- 
bulence at a particular time; x is the spatial co-ordinate and u is the velocity. 
Assuming that u is statistically homogeneous in x, Meecham & Siege1 (1964) 
deduce a Wiener-Hermite expansion for u(x ,  t ) ,  

a representation analogous to the Hermite-polynomial expansion of y( t ;  a) .  The 
kernels K(n) are functions of time and fully account for the time dependence of u 
as well as for its statistical properties. The H(") are time-independent Hermite 
polynomials of the white-noise function a( t ) .  a(5) equals H(l)(<), is Gaussian, 
satisfies (a([ )  a(q) )  = a(<- q), and enters the dynamical problem through the 

(1.4) 
initial condition m 

u ( x ,  0) = 1 K&]-)(x- t )  a(<) at. 
--m 

The velocity is thereby assumed to be Gaussian at time zero, and subsequent 
departures from Gaussianity are supposed, in some sense, to be small. Meecham 
truncates (1.3) under the assumptions that Gaussianity introduced at  the be- 
ginning dominates the decaying turbulence throughout its lifespan, and that 
the higher-order terms in (1.3) are necessarily small for a nearly Gaussian u. 

2. Numerical solutions for a truncated expansion of the Burgers 
equation 

The Burgers equation is au au 82u 
- 
at ax = '- 8x2' 
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where v is the kinematic viscosity. The Wiener-Hermite expansion of (2.1) in- 
volves three steps. First, u(x,t) is replaced with the expansion (1.3).  Secondly, 
the resulting expression is multiplied by any one of the Hermite polynomials 
of the white-noise function. Thirdly, the product is averaged over the ensemble 
of white-noise functions. The ensemble average projects (2.1) onto the statistically 
orthogonal Hermite polynomials of the white-noise function in the same way 
that a spatial integration projects (2.1) onto sines and cosines in an inverse 
Fourier transformation. Those three steps extract an equation for the time 
derivative of the kernel that appears in (1.3) as the coefficient of the particular 
Hermite polynomial used in the second step. Applied to each Hermite polynomial 
in turn, the extraction process generates an infinite set of coupled equations for 
the evolution of the infinite set of kernels in (1.3). Randomness is thereby 
removed from the problem at the outset, and one can concentrate on finding 
approximate solutions for the kernels. It is important to recall that the kernels 
account for the time dependence of the flow as well as for its statistical properties. 
The infinite bank of equations for the kernels contains exactly the same informa- 
tion as the Burgers equation. If  all the kernels were known, then exact solutions 
of the Burgers equation could be recovered from the expansion (1.3). 

The Wiener-Hermite expansion is compntationally useless unless it can be 
truncated after a very few terms. Meecham ignores all but the first two terms in 
(1.3) and arrives at  a pair of coupled integro-differential equations for K(1) and 
K@). The Fourier-transformed versions of the equations are simpler and can be 
solved more accurately than the original equations in physical space. Transfor- 
mations carried out according to Meecham’s convention, for example 

~ ( l ) ( k )  = ~ ( l ) ( x )  eikx ax, 

yield the following pair of equations: 

+ (k + I) Srn K@)(rn, k) K@)( - m, 1) dm (2.3) 
--oo 

(Jeng, Foerster, Haaland & Meecham 1966). The two kernels make separate 
contributions to the energy spectrum d(k,  t ) .  Thus 

&(k, t )  = &l@, 0 +&2@, t ) ,  (2.4) 

where 

The spectrum is normalized so that the quantity 
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equals the total mean energy density (+u2). E is likewise a sum of distinct con- 
tributions El and E, from the two kernels. The size of the ratio E,/E, is the best 
available indication of how fast a Wiener-Hermite expansion converges. 

We have solved equations (2.2) and (2.3) numerically for a range of Reynolds 
numbers, and we present typical histories of E and its components El and E,  
in figures 1 and 2. Each numerical experiment begins with the spectrum 

where U is the root-mean-square velocity &u2), and the length scale L is the 
inverse of the wave-number at  which g0(k) has its maximum. Following Meecham, 
we assume that the flow is originally Gaussian so that, as far as (2 .2 )  and (2.3) 
are concerned, the initial conditions are 

Kbl)(k) = 4($)8 (2n)t ULS (kL),e-@L)', (2.8) 
from (2 .5 ) ,  and K p ( k ,  a )  = 0. 

The calculations involved step-function approximation for the kernels, with 
ten steps per wave-number interval 2.5-1, the interval spanned by the initial 
spectrum (2.7). 

The initial energy spectrum (2.7) differes from the bell-shaped spectrum used 
by Meecham and his co-workers (Meecham & Siege1 1964, Jeng et al. 1966). We 
chose (2.7) so that the integral of the initial correlation function Ro(r), namely 

J -03 

would be zero. If it were non-zero, then a region of length 9 spanning many 
eddies would contain a net momentum proportional to JY; Saffman (1967) has 
discussed the analogous situation in three dimensions. A momentum growing as 
49 is mathematically possible, but the result is a meandering function u(x,  t )  
that conflicts with one's intuitive picture of Burgers's model turbulence. The 
turbulence corresponding to (2.7) is more nearly analogous to three-dimensional 
turbulence produced by wind-tunnel grids, since they cannot impart arbitrarily 
large momenta either. 

It is convenient to discuss the figures in terms of an initial Reynolds number 

R = UL/V 
T = L / U ,  and a time scale 

which, at high Reynolds numbers, is roughly the time that elapses before strong 
shocks form. 

The ratio E2/El remains small over the whole decay period for Reynolds 
numbers about 2 or below, so succeeding terms in the Wiener-Hermite expansion 
may indeed be small. The cases R 5 2 are not stringent tests, however, because 
the Burgers equation behaves almost linearly at such low Reynolds numbers. 
Figure 1 shows the history of the energy a t  a Reynolds number of 5 .  The heavy 
line is a plot of E/E,  against t /T,  where the subscript 0,  as usual, denotes con- 
ditions at time zero. The finer curves, which are plots of EJE,  and E,/E,, show 
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how the energy is partitioned between the two kernels. E,  becomes larger than 
E,  at t = 1-8T. Equations (2.2) and (2.3), after that time, probably represent 
the dynamics badly. The bulk of the energy resides in the second kernel, and it is 
safe to assume that higher-order kernels would be significantly excited if they 
were admitted into the computations. 

n F ., 
1 2 3 4 

tlT 

FIGURE 1. Enorgy history computed from equations (2 .2)  to (2.6). R = 5. 

1 2 3 4 
t/T 

F I G ~ E  2. Energy history computed from equations (2.2) to  (2.G). R = 20. 

Figure 2 shows the energy histories at R = 20. E2 exceeds E, by the time 
t = 1.OT. Moreover, only 32 % of the net energy has been dissipated up to the 
time t = 4-OT when the calculations end. That is completely inconsistent with the 
behaviour of the Burgers equation itself (figure 5 shows the results of numerical 
experiments on the Burgers equation; for R = 20 and t = 4*OT, the energy has 
decayed down to 18% of its initial value). Equations (2.2) and (2.3) grossly 
underestimate the rate of energy decay at moderately high Reynolds numbers. 
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The reason that they do so is explained in the next section: the equations contain 
no convolution integrals and, as a consequence, cannot cascade energy into the 
dissipation range. 

3. Inability of a truncated Wiener-Hermite series to represent an 
energy cascade 

The Fourier transform of the Burgers equation (2.1) is 

where b( k) is the velocity field transformed according to Meecham’s convention. 
The convolution integral appearing in (3.1) is the Fourier-transformed advection 
term uaulax. The convolution integral allows distant Fourier modes to interact. 
If the energy spectrum is initially localized in a particular region of wave- 
number space, then the convolution integral rapidly carries energy to other 
regions. 

Both (2.2) and (2.3) contain terms associated with the advection process, but 
those terms are fundamentally unlike the right-hand side of (3.1): they are free 
of convolutions. The following example shows how the absence of convolutions 
blocks the energy cascade. Suppose that, at  time zero, K(2)(k, I) is zero everywhere 
and K(l)(k) is also identically zero for Ikl greater than some kmax. After a short 
time St, according to (2.3), the second kernel will have attained a value 

K(2)(k, I) = &iSt(k+ I) KLl’(k) Kf)(Z) ,  (3.2) 

which is non-zero only for lkl Q kmax and IZI Q kmax. A t  time St, therefore, the 
second kernel is confined in wave-number space to a square whose boundaries 
are k = 5 kmax and 1 = f kmax. Let us consider the effect that the confinement 
of K(2) has on the evolution of K(l), which satisfies (2.2). At time 6t, the transfer 
term on the right-hand side of (2.2) is still zero for lkl > because K@)( - m, k) 
is zero for such values of k. In  order for the transfer term in (2.2) to cascade energy 
to lkl > k,,,, the second kernel would have to escape from the square to which 
it is confined at time St. 

The second kernel, however, can never escape. At time St, the first kernel is 
still zero for llcl > kmax, and it has not begun to grow. The source term in (2.3), 
the first term on the right, continues to be confined to the original square. The 
transfer term in (2.3), the second term on the right, is likewise zero for wave- 
numbers outside the square: for Ikl > kmax, E2)(m, k )  is zero, and, for [ Z l  > I%max, 

1P)( - m, Z) is zero. At this point, the argument becomes cyclic. The first kernel 
is trapped on a line interval for all time, and the second kernel is trapped in a 
square. The kernels cannot flow across their boundaries. Energy simply shuffles 
from element to element of the two kernels, and all the while they remain within 
the boundaries imposed at  time zero. 

Although convolution integrals do not appear in (2.2) and (2.3), one does 
appear in the definition (2.4) of the spectrum 8 ( k ,  t ) .  Since K(l) is confined to the 
interval Ikl < k,,,, equation (2.5) shows that is similarly confined. It is 
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evident from ( 2 . 6 ) ,  however, that g2 can be non-zero in a larger interval, namely 
Ikl 6 2kmax. The spectral band kmax < k 6 2kmax becomes excited, but 2kmax 
persists as the absolute upper limit for all time. If 2kmax falls short of the dissipa- 
tion range of wave-numbers, then equations ( 2 . 2 )  and ( 2 . 3 )  cannot dissipate 
energy realistically. 

0.4 

g 0.2 
b 

0 

k L  

FIGURE 3. Energy spectrum computed from equations (2.2) to (2.6). R = 20 and t = 1.OT. 
The heavy curve is b / U 2 L ,  the curve labelled (1) is &JU2L, and the curve labelled (2) is 
Cf2/U2L. 

The argument so far has been presented in terms of a kernel K(l)(k) whose 
initial value is identically zero for Ikl > kmax.  The conclusion that ( 2 . 2 )  and ( 2 . 3 )  
fail to cascade energy applies just as well, nevertheless, to an initial kernel of the 
type ( 2 . 8 ) .  Figure 3 shows the energy spectrum and its partition between the 
first and second kernels computed from equations (2 .2) - (2 .6)  for a Reynolds 
number of 20.  Figure 3 is based on the same numerical experiment as figure 2 
and shows the apectrum at a time t = 1.027 when, according to figure 2,  the 
quantities El and E ,  are about equal. The total spectral distribution &/U2L is 
plotted against the dimensionless wave-number kL as a heavy line, and the 
components 6?l/UzL and g2)2/U2L are plotted as finer lines. It is clear that the 
wave-number 2L- l ,  beyond which the initial spectrum ( 2 . 7 )  is essentially zero, 
is acting as an effective kmax. is trapped below 2L- l ,  and its shape is qualita- 
tively similar to its original shape ( 2 . 7 ) ,  that is, roughly symmetric around L-1. 
€, has spread out twice as far, but is trapped below 4L-1 M 2k,, just as the 
argument of the previous paragraph would suggest. cf2 is nearly symmetric 
around its midpoint 2L-I. It is shaped much like cY1, in fact, except for a tail 
extending to low wave-numbers. For small times, at  least, it is easy to show 
analytically how that comes about. Equation ( 3 . 2 )  gives E2) at a time St. 
According to ( 2 . 5 )  and ( 2 . 6 ) ,  therefore, 

g0(m) g0(k - m) dm,. 
2 

If  g0(k) is sharply peaked around its maximum at k = L - l ,  then the integral 
can be evaluated explicitly: - 

{&,(k - L-1) + 6?o(k + L-I)}. 8 , (k ,S t )  = ~ 

(kUSt)2 
2 ( 3 . 3 )  
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The expression inside the brackets has sharp peaks at  the three wave-numbers 
k = 0, t 2L-l,  but because of the factor k2 in front cT2 is sharply peaked at 
k = t 2L-I. Thus t-F2 has its strong maxima at  twice the wave-numbers & L-l 
characterizing the maxima of &l. Figure 3 indicates that that condition persists 
up to times of order T. 

The conclusion that Kc1) is trapped on a line interval and K(2) is trapped in a 
square remains valid even when more than two terms are included in the 
Wiener-Hermite expansion (1.3). Siegel, Imamura & Meecham (1965) have 
presented the general equation for the time development of the kernels. At no 
level of truncation are convolution integrals introduced. If three terms are in- 
cluded in the expansion, for example, and if is initially confined to the 
interval lkl < kmax, then the arguments of this section can be extended to show 
that, for all time, K( l ) (k )  is confined to that interval, K(2)(k,1) is confined to a 
square Ikl, 111 < km,x,andK(3)(k,b,m)isconfinedtoacube Ikl, Ill, Im] < kmax.The 
three kernels are so confined no matter how many terms are included in the 
expansion, and subsequent kernels are confined to higher-dimensional analogues 
of the cube. We conclude that the inability of the kernels to escape their boun- 
daries in wave-number space is a fundamental attribute independent of the 
order of truncation and is therefore an exact consequence of the Burgers equation. 

Suppose a third term were included in the Wiener-Hermite expansion. The 
spectrum & would then be a sum of three terms, &l+&2+€.. ,  where cY1 and 
€2 still satisfy (2.4) and (2 .5) ,  and 

&3(k, t )  can be non-zero out to 31C,ax, since K(3)(kmax, kmax, 3kmax - kmax - itrnax) 
need not be zero. Including a third term in the expansion adds a third band to 
the range of accessible wave-numbers. By the same kind of argument that led 
to (3 .3 ) ,  moreover, it is easy to  show that &3 is more-or-less peaked around 
k = 3L-l.  The discussion can be extended to cover as many terms in the Wiener- 
Hermite expansion as desired. Figure 4 is a sketch of what might happen if all 
the terms were included in the expansion of a relatively low Reynolds number 
velocity field. Roughly speaking, the Nth kernel contributes the portion of the 
spectrum &(k, t )  near k = NL-l. Successive terms in the Wiener-Hermite ex- 
pansion are associated with successive bands in wave-number space. An ex- 
pansion comprising N terms can account for dissipation only if 

Thus N must be about as large as the Reynolds number of the turbulence. The 
Wiener-Hermite expansion based on the initial state of the flow is therefore a 
useless representation at  high Reynolds numbers. 

Meecham & Siegel (1964) start from a two-term expansion and formulate a 
theory that does allow an energy cascade. The cascade originates after they 
make several approximations, one of which changes the fundamental structure 
of the theory and gives rise to results qualitatively inconsistent with the original 
equations (2 .2 )  and (2 .3 ) .  They drop the second term on the right of (2 .3 )  and 
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assume that (3.2) is always an adequate approximation, provided St is replaced 
with T. A simple equation relating the energy spectrum B to its Gaussian com- 
ponent g1 results : 

Meecham & Siege1 then close (3.4) by replacing with 8 under the transfer 
integral and thereby release an open-ended cascade. €(k, t )  evolves into the h+ 
spectrum characteristic of shock discontinuities (Saffman 1968). The k2 spec- 
trum should not be counted as an argument for truncated Wiener-Hermite 
expansions, however, because the closed version of (3.4) follows more naturally 
from the straightforward quasi-normal theory of Reid (1956). 

0.2 

Q 5 0.1 

G- 

2 4 6 8 
0 

k L  

FIGURE 4. Sketch of a possible energy spectrum for the model turbulence. Contributions 
from the first four Wiener-Hermite kernels are shown as fine lines. The heavy line is the 
total spectrum. 

4. Numerical analysis of turbulence into Gaussian and non-Gaussian 
components 

We showed in the previous section that the first term of the Wiener-Hermite 
expansion (1.3) cannot help to represent an energy cascade. The argument, set 
in wave-number space, was rather formal. In  this section, we describe results 
obtained directly from numerical experiments on the Burgers equation (2.1). 
The results provide a simple physical explanation of why the Gaussian com- 
ponent of turbulence cannot participate in a cascade. 

A great deal is known about random solutions of the Burgers equation in 
physical space, and Saffman (1968) has reviewed the subject recently. At low 
Reynolds numbers, for example, the advection term in (2.1) is negligible, the 
turbulence decays by viscous diffusion, and the energy decreases algebraically 
with time. For an initial spectrum of the form (2.7), 

- E = (1+&)-! 

ELl 
(4.1) 

The relaxation time is RT. 
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At high Reynolds numbers, on the other hand, shocks form out of an originally 
Gaussian flow in a time of order T. The spectrum (2.7) is sharply peaked around 
its maximum at k = L-l, so the corresponding initial fields u(x,  0 )  are roughly 
periodic at  a wavelength h = 2n-L. If an initial field were exactly sinusoidal, with 
a wavelength h and a root-mean-square amplitude U ,  then shocks would form 
at t = 0.71T and reach their maximum intensity at  t = l.11T. The time scales 
for the formation of strong shocks under random initial conditions are about 
the same. 

Little energy is dissipated at high Reynolds numbers until the shocks form. 
Having formed, however, the shocks dissipate energy at a rate controlled by 
large-scale, triangular eddies (cf. figure 7) .  The eddies relax in a time of order T, 
regardless of the Reynolds number as long as it is large. The eddies, as they relax, 
advect their energy into adjacent shocks whose thicknesses adjust to dissipate 
the energy as it comes. If the eddy field consisted of regular saw-tooth elements 
of length h and maximum amplitude U ,  then the velocity would jump from U 
to - U across shocks of thickness 

2L 
S = -ln(Zn-rR), R (4.2) 

measured from a maximum of u to the minimum immediately following. In- 
creasing the Reynolds number merely decreases the thickness of the shocks; 
it cannot alter the large-scale structure of the eddies or the rate a t  which they 
relax. For a given initial spectrum, therefore, energy decay curves obtained 
from the Burgers equation must approach a definite limiting shape as R -+ m. 

We carried out our numerical experiments on a CDC-3400 computer. The 
computer started by setting up Gaussian initial conditions according to equation 
(1.4). The inverse transform of (2.8), 

was chosen for the initial kernel. That choice makes the results of this section 
comparable to those of $2. The white-noise function a(6) was approximated by 
a step-function whose elements were assigned independent, Gaussianly dis- 
tributed pseudo-random values. Having established the initial condition, the 
computer traced the evolution of u(x,  t )  by means of a finite-difference approxima- 
tion to (2.1), namely the quadratic advection scheme discussed by Leith (1965). 

Two length scales characterize the numerical programme: a step-length Ax, 
and the length 2 of the strip of evolving turbulence. The same step-length was 
used for the step-function approximation to a(&) and for the finite-difference 
solution of the Burgers equation. For high Reynolds number problems, the step- 
length was chosen so that strong shocks spanned about four steps: Ax M @. That 
kept the computations sufficiently accurate, and, a t  the same time, ensured that 
the approximate a(g) was sufficiently white. The length scale 9 was made as 
large as possible so that ensemble averages could be estimated accurately as 
spatial averages over 2. Since the computer could handle internally at  most 
5000 grid points, 23 was always 5000Ax. At a Reynolds number of 5, for ex- 
ample, 39 steps were used in each interval L. A typical eddy, having a length A, 
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therefore spanned about 20 grid points. The length 23 of the strip of turbulence was 
1500L or about 240h. At a Reynolds number of 2 0 , 9  had to be less than looh. 
Since the number of roughly independent eddies was of the order of 100, the 
fractional error expected of spatial averages is about J( lOO)/ lOO, or 10 yo. 

1 2 3 4 

tlT 

F I G ~ E  5. Energy decay curves computed directly from the Burgers equation. Reynolds 
numbers are shown inside the figure. The dotted line, obtained by extrapolation, is the 
asymptotic decay profile for R -+ co. 

1.0 

6 0.5 
R 
. 

0 
1 2 3 1 2 3 

$IT 
FIGURE 6. Energy decay curves computed from equations (2 .2)  to (2.6). 

Having determined ~ ( z ,  t ) ,  the computer estimated the energy E by averaging 
over the interval 9. The estimate has an expected error of 10 %. E(t) and 

its initial value E, should be off by about the same percentage, however, so a 
plot of E(t) /Eo should be quite accurate. Figure 5 shows a family of such decay 
curves obtained from the numerical experiments on the Burgers equation; EIE, 
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is plotted against t/T for Reynolds numbers of 4, 1 ,  2 ,  5 ,  10, and 20. The curves 
obtained at R = 4 and 1 follow the law for linear relaxation, equation (4 .1 ) ,  very 
closely. The curve at  R = 2 drops somewhat faster than (4 .1 )  predicts, and the 
curve at  R = 5 drops much faster. Strong shocks form when R = 5 (cf. figure 7) ,  
and non-linear advection, rather than viscous diffusion, controls the rate of 
decay. The decay curve changes very little as R increases from 5 to 10, and still 
less from 10 to 20. The dotted curve represents the limiting decay profile for 
R --f co. It was obtained from the computed profiles by plotting EIE, against 
1/R, for various t /T,  and extrapolating the plots to 1 / R  = 0. The limiting profile 
has zero slope a t  t/T = 0. A Gaussian initial state contains no shocks, and no 
dissipation can occur at infinite Reynolds number until shocks form. 

Figure 6 shows the corresponding decay curves obtained by integrating (2 .2)  
and (2 .3 ) .  Equation (4 .1)  and the curves of figures 5 and 6 all agree very well at  
R = 4 and 1. At R = 5, the curve in figure 6 is about 10 % high, and the error 
grows dramatically for larger Reynolds numbers. Equations (2 .2 )  and (2 .3 )  pre- 
dict an appreciable decay only after a time of order RT, the linear relaxation 
time, and they predict no decay a t  all for R -+ co. The first two terms of the 
Wiener-Hermite expansion (1 .3 )  cannot represent shocks and therefore cannot 
account for a relaxation process having a time scale T. 

The computer next extracted the kernel K(l)(z) appearing in the Gaussian 
term of ( 1 . 3 ) .  In  terms of an ensemble average, 

K(l)(x) = (u (x  + 6, t )  a(( ) ) .  (4.3) 

Because the turbulence is homogeneous, (4.3) is valid for any 5. For the purposes 
of numerical computation, of course, (4 .3 )  was approximated by a spatial average 
over the interval - 4 9  < 5 < 49. The error expected of the extraction procedure 
is again about 10% at the higher Reynolds numbers. The final stage of the 
numerical programme was the reconstruction of the Gaussian term of (1 .3 )  itself: 

Figure 7 (a) shows a segment of computer-generated turbulence. The Reynolds 
number is 5, the time t is l .OT, and the length of the segment is 20L.  The velocity 
jumps average about 2U across the shocks, so (4 .2 )  is applicable. The figure and 
the equation both indicate that 6 and L are about equal. Figure 7 ( b )  shows the 
Gaussian component u1 of the same segment of turbulence, and figure 7 ( c )  shows 
the difference u - ul, which is the sum of all the non-Gaussian components of u. 
As far as amplitude is concerned, the Gaussian component is dominant. There 
is a striking qualitative difference between u and ul, however, and that difference 
is the basis of the fact that u1 cannot participate in an energy cascade. The Gaus- 
sian function ul(x, t )  is statistically symmetric under a change in sign, whereas 
u(x,  t )  is not. The net velocity u(x, t )  is statistically symmetric under simultaneous 
changes in the signs of u and x (that can be seen by inspecting figure 7 (u) upside 
down !), butthe shocksfacein thewrongdirectionifthevelocityalone changessign. 
Because it must remain symmetric, the Gaussian component u1 cannot follow 
the total field u as it skews into shocks. The shock structure can be represented 
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in (1.3) only by properly skewed quadratic and higher-order terms. Figure 7 (c) 
shows that u-ul, the sum of the non-Gaussian terms, is indeed responsible 
for the shocks. Strong shocks occur at x/L = 3,8 ,  and 16 in figure 7 (a), and well- 
defined velocity couplets occur a t  those points in figure 7 ( c ) .  Since the Gaussian 
component cannot incorporate shocks, it cannot contain high wave-number 
modes of the Fourier-transformed velocity field. Those modes are associated 
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FIGURE 7. (a) Segment of the model turbulence at R = 5 and t = 1.OT. (b )  Gaussian com- 
ponent of the turbulence. (c )  Sum of the higher-order components. 

with the shock structure and therefore with the non-Gaussian component u - u1 
of the flow. It is clear from figures 7 (b)  and (c) that the function u - u1 is pitched 
at  a considerably higher wave-number than ul. 

Energy cascade and shock formation are the same process. A cascade of 
energy does not give rise to jumbled, staccato turbulence, the sort that a high- 
pitched Gaussian function could represent, but to a sequence of well-spaced 
shocks. The Gaussian component of the field cannot skew into shocks, so it fails 
to incorporate them as they form. The Fourier transform of u1 cannot contain 
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high wave-number modes, because they are associated exclusively with the 
shocks. That is the reason €l, the spectrum of ul, is confined for all time to low 
wave-numbers. 

5. Conclusions 
We have come to the following conclusions: 
1. Equations derived by truncating the Wiener-Hermite series (1.3) do not 

yield a sufficiently rapid energy decay a t  high Reynolds numbers. For R $ 1, 
the energy is nearly constant over an eddy time T. 

2. The reason that the energy decays so slowly is that there is no mechanism 
for an energy cascade within a low-order term of the Wiener-Hermite expansion. 
Instead, a cascade of energy through wave-number space corresponds roughly 
to a cascade of energy through successive terms in the expansion. The kernel 
K(l) is confined to a definite line-interval in wave-number space for aZZ time, IG2) 
is confined to a square, to a cube, and so on. A k-2 spectrum can be obtained 
only by means of an approximation that is inconsistent with exact consequences 
of the theory. 

3. The physical reason why K(l) is confined for all time is that the Gaussian part 
of a random function is statistically symmetric under a change of sign and cannot 
help to represent shocks. The shock structure, which comprises the high wave- 
number components of the velocity field, can be represented only by higher- 
order kernels. 

The question remains whether a truncated expansion like (1.3) might represent 
real hydrodynamic turbulence better than it does the Burgers model. The single- 
point probability distribution of a three-dimensional turbulent field is indeed 
nearly Gaussian (Batchelor 1953), and the experimentally observed Gaussianity 
has been advanced as a justification for truncating Wiener-Hermite expansions 
(Meecham & Siege1 1964). As far as the experiments are concerned, however, 
' Gaussianity ' means that velocities measured simultaneously, but at  separate 
points in space, have a joint-normal probability distribution; that property we 
shall call spatial Gaussianity. A function u(x,  t )  that has evolved deterministically 
from a random initial state u(x, 0) could be spatially Gaussian to all orders and 
still require many terms of (1.3) for its representation. The quadratic and higher- 
order terms in (1.3) can be zero only i f  u ( x ,  t )  and its initial state u ( x ,  0) have a 
joint-normal probability distribution; we shall call that condition temporal 
Gaussianity. Non-linearity might create spatial Gaussianity and simultaneously 
act to destroy temporal Gaussianity. 

Let us sharpen that argument by returning to the case, discussed in the intro- 
duction, of a simple random variable y ( t ;  a )  whose initial value a has a Gaussian 
probability distribution G(a) .  Suppose that 

dy/dt = - 2aS(t - Ial), 

where S is the Dirac delta function. The solution bears a highly non-linear rela- 
tionship to its random initial condition : 
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In other words, a system starting at y(0; a)  = a flips sign at the instant t = la]. 
The random variable y( t ;a)  can be expanded in Hermite polynomial form ( l . l ) ,  
and the coefficients k,(t) can be extracted by means of (1.2). The expansion 
begins as follows: 

+ ... . 
At t = 0, y = h,(a) = a. As t + 00, y + -a ,  which simply means that a t  large 
times almost all the systems have flipped sign and y ( t ;  a )  is related linearly again 
to its initial condition. For t finite, however, all the odd-numbered higher-order 
terms of the Hermite expansion are excited. k,(t)  passes through zero a t  one 
instant, and at that instant y is represented strictly by ‘non-Gaussian’ terms. 
Yet, all the while, y remains precisely Gaussian in the sense that its probability 
distribution is G(y). For every system in the ensemble that flips from -a  to a, 
another flips from a to -a, and the probability distribution is unaltered. 
Gaussianity of y itself implies nothing about the convergence of a Hermite 
series based on a random initial condition; analogously, spatial Gaussianity of 
hydrodynamic turbulence, to whatever extent it is present, does not justify 
truncating a Wiener-Hermite expansion based on the initial state of flow. 

The expansion (1.3) is complete, however slowly it converges, but it is not 
unique. The white-noise function associated with the initial condition (1.4) may 
not be the best basis for an expansion a t  a later time. It may be possible to update 
the white-noise background systematically so that it, rather than the kernels, 
can represent a chaos developing under non-linear interactions. Wiener (1958) 
himself recognized that a series of the form (1.3) might not converge rapidly 
enough, but the chapters in which he proposes an alternative are the most 
mysterious in his book. The formulation studied in this paper requires that 
aa(z)/at = 0; the white noise is an unchanging substratum of the turbulence. 
Wiener thought that the white noise should be convected by the flow so that 
Dn(s,t)/Dt = 0,  where D/Dt signifies a convected derivative. It is difficult to 
accept the claim, however, that a convected function can retain Gaussian charac- 
teristics. Several workers recently have tried to build consistent theories using 
time-dependent white-noise backgrounds (Canavan & Leith 1968, Bodner 1969), 
and one of those approaches will be discussed in the next paper at this Symposium 
on Turbulence. 

Most of this work was performed in 1967 a t  the Lawrence Radiation Laboratory, 
under the auspices of the United States Atomic Energy Commission. We had 
several stimulating discussions about Wiener-Hermite series with C. E. Leith 
during that time, and we are grateful. We are indebted further to S. A, Orszag for 
much helpful criticism during his stay at the Boeing Scientific Research 
Laboratories. 
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